Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

Future Mobility and Resilient Transport: Transition to innovation

Special Session/Workshop I

Challenges & Lessons Learned in CCAM

Abstract (up to 200 words)

The current session, namely "Challenges & Lessons Learned in CCAM" will bring together representatives from key European initiatives in Cooperative, Connected and Automated Mobility (CCAM) field to discuss challenges arisen and lessons learned in all interrelated aspects in the field, namely technical, operational, legal and regulatory, standards & policy, data governance, business models, deployment, evaluation and user engagement and other.

The presenters will share the knowledge acquired and will present results, tools, best practices, recommendations, barriers and enablers in selected aspects, as above mentioned, relevant to their work.

An interactive round-table triggering discussion and brainstorming with the audience of the session, in relation to open issues recognised by experts, will close the session.

Aim of the Special Session/Workshop (up to 400 words)

The above topics are deemed of high importance and relevance to the topics of ICTR 2021, as they touch upon one of the most innovative fields in transport, the one of cooperative, connected and automated mobility, that, in turn, touches upon energy and environmental goals as well as sustainability and resilience in transport overall. CCAM is furthermore, by default, a domain where research and industry need to and do already collaborate towards achieving viable but also breakthrough and robust solutions that will penetrate in everyday mobility.

The scope of the session is to showcase the latest advancements in CCAM, with the aim to specifically recognize the key difficulties encountered and substantiate the lessons acquired across all layers to allow the transition to the new era, that one of the real life and wide deployment of the emerging solutions to transform the near future mobility in Europe and beyond.

The specific target of each presentation is shown in the following table.

#	Presentation	Short description		
1.	CCAM for Public Transport – Insights	The Shared Personalised Automated Connected vEhicles		
	from the SPACE project	(SPACE) project aimed to place public transport at the		
		centre of the automated vehicles revolution and helped		
		build a combined transport ecosystem. The presentation		
		aims to address the following questions: What are the		
		main insights and contribution of the project? What is		
		still needed to make this revolution happen?		
2.	User informed CCAM through	rough The user perspective has been a missing link for CCAM		
	international surveys	during the past years. A number of surveys have been		
		conducted recently to address this gap. Yet, such surveys		
		lack cross-national co-ordination and often overlook local		

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

#	Presentation Short description		
		socio-economic factors. This presentation will offer an	
		insight to the findings of the WISE-ACT survey distributed	
		in 25 countries, focusing on the influence of e.g. gender	
		about AV sharing.	
3.	Towards an automated mobility	Presentation on the overview of findings of	
	future: the Drive2theFuture user-	Drive2theFuture project on the preparation of drivers,	
	centered approach	travellers and vehicle operators of all modes, towards	
		raising acceptance and willingness to use, in view of the broad deployment of connected, cooperative and	
		automated vehicles. This is approached (among others)	
		through user acceptance surveys, behavioural modelling,	
		development of training programmes and tools, HMI	
		optimization, broad pilot testing, business modelling,	
		policy recommendations and a user acceptance roadmap	
		to automation.	
4.	Towards ethical decision support in	Presentation of the models developed for automated	
	automated driving systems	decision support in ADS with a focus on the ones	
		referring to ethical aspects and liability.	
5.	The acceptance of automated	The main goal of H2020 SUaaVE project is to enhance the	
	vehicles through understanding the	acceptance of automated vehicles through the	
	passenger's state	formulation of ALFRED, defined as a human centered	
		artificial intelligence to humanize the vehicle actions by	
		understanding the emotions of the passengers and	
		managing corrective actions for enhancing trip	
		experience. This presentation focuses on the approach to	
		estimate the emotional state of the passenger through	
		monitoring their physiological signals and the information from external factors of the vehicle.	
6.	A unified network architecture to	The main goal of ICT4CART is to design, implement and	
0.	support advanced CCAM Use Cases.	test in real-life conditions a versatile ICT infrastructure	
	support advanced CCAIVI use cases.	that will enable the transition towards higher levels of	
		automation (up to L4) addressing existing gaps and	
		working with specific key ICT elements. The aim of this	
		architecture is to cover different use cases and to offer	
		the ability for deployment in all test sites and beyond. To	
		achieve this, it has to address the requirements of all the	
		different scenarios while remaining generic enough to be	
		deployed for automated driving in general and to allow	
		more use cases to be integrated. It shows a solution to	
		interoperability of the various heterogeneous networks	
		and software components throughout the architecture. It	
		also defines the high-level data flow in the	
		Communication View and the involved IT services in the	
		Data / IT Environment View. Finally, principles by which	
		cyber-security and privacy will be enforced throughout	
		the architecture are given in the Cyber-Security & Privacy	
		View.	

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

#	Presentation	Short description		
7.	Physical and digital infrastructure	The presentation will discuss the challenges and lessons		
	for CCAM – state of the art	learned in identifying the ODD related infrastructure		
		attributes and the categorisation of the road and street		
		networks to describe the Infrastructure Support levels for		
		Automated Driving (ISAD). The presentation is based on		
		experiences from European and national projects and		
		platforms studying and discussing these issues.		
8.	Forecasting and backcasting of	The Horizon 2020 Levitate project aims to investigate the		
	Connected-Automated Vehicle	potential short, medium and long term impacts of		
	impacts using multiple	Connected and Automated Transport Systems (CATS),		
	methodological inputs	through an innovative multi-disciplinary impact		
		assessment methodology, which will be incorporated		
		within a new web-based policy support tool (PST) to		
		enable city and other authorities to forecast impacts of		
		CATS on urban areas. The proposed presentation will aim		
		to outline the estimation process for the impacts of CATS		
		through a multi-disciplinary impact assessment		
		methodology including microsimulation, system		
		dynamics and the Delphi method, and their subsequent		
		integration into a functional PST.		
9.	Safety CCAM introduction - lessons	Presentation of outcomes and lessons learned from field		
	learned from field tests	tests carried out in the AV-PL-ROAD project.		
10.	Drivers and barriers to automated	In this paper the drivers and barriers to automated		
	mobility: lessons learned from an	mobility implementation are investigated, providing also		
	Italian pilot experiment	some indications about the assessment of the users'		
	· ·	acceptance. The findings come from an experiment		
		conducted on a closed environment in Turin (Italy), test		
		site of SHOW Innovation Action project. The lessons		
		learnt in this study indicate possible challenges and		
		opportunities relevant for the deployment of automated		
		mobility services.		
11.	Driving without Driver in Public	Presentation on the experience from the AVENUE project		
	Transportation	in the deployment of IT based services targeting in		
	·	offering the driver assistance services in a driverless PT		
		shuttle, discussing the related issues, obstacles and		
		considerations in the implementation of these services. A		
		novel artificial intelligence (AI) supported framework that		
		enables wide adoption of these services will be also		
		presented envisioning significant enhancement of safety		
		and security levels in automated public transportation as		
		well as passengers trust.		
12.	City policy response for adopting	Innovative vehicles based on cutting-edge technologies		
	innovation in mobility; automated	will be deployed and tested within SPROUT to carry both		
	modular buses/pods for cargo	passengers and freight. The cargo hitching concept will		
	hitching (integrated	be applied to an advanced smart transportation system –		
	passenger/freight operation) -	called "Next" - based on swarms of (electric) modular		
	SPROUT project	self-driving pods. Each module can join and detach with		
		,		

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

Future Mobility and Resilient Transport: Transition to innovation

#	Presentation	Short description		
		other modules on standard city roads. When joined, a		
		bus-like vehicle is created by modules. The modules can		
		move autonomously on regular roads, join themselves		
		and detach even when in motion. Modules carrying		
		passengers and goods are combined on the basis of		
		estimated flows, which are calculated in real-time by		
		algorithms considering different final destinations by		
		users and freight.		
13.	The EU-wide Knowledge base on	In an effort to facilitate the exchange of lessons learned		
	CCAM: lessons learned from EU-	and best practices, as well as the identification of		
	funded and national projects	synergies and gaps between projects, the EU-funded		
		ARCADE Coordination and Support Action has set up a		
		comprehensive knowledge base on CAD-related activities		
		in Europe and beyond. The project is also gathering best		
		practices and lessons learned from EC funded and		
		national projects. This presentation will provide an		
		overview of the Knowledge base and results from the		
		analysis of lessons learned from projects and pilot		
		activities in Europe.		

Organizers

Main Organiser: Dr. Evangelos Bekiaris, Director, Hellenic Institute of Transport (HIT)/ Centre for Research and Technology Hellas (CERTH), Thessaloniki: 6th km. Charilaou- Thermi Rd, 57001 Thermi, Thessaloniki, Macedonia, Greece, Tel. +30-2310-498453; Athens: 52, Egialias, 15125, Marousi, Athens, Greece, Tel. +30-211-1069599, abek@certh.gr, www.hit.certh.gr

Evangelos Bekiaris, PhD on Mechanical Engineering, is the Hellenic Institute of Transport (HIT) Director General as of 2016 and the CERTH Vice-President as of 2021. Since 1992 he has participated in 105 research projects, in 42 of which at the role of Coordinator. He is member of the National Council for Research and Innovation (N.C.R.I.) since 2019, National Representative in the European Commission Climate Neutral and Smart Cities Mission Board of Horizon Europe (HE) since 2020, the National representative of Greece in the H2020 Transport Committee since 2014 and President of the European Conference of Transport Research Institutes (ECTRI) and the European Rail Research Network of Excellence (EURNEX) since 2019. In the past he's also been the President of the European Associations FERSI (on Road Safety) and HUMANIST (on Human Factors in Transport). He is also author of 75 articles in scientific journals, 38 contributions in books, 298 conference publications and editor of 8 books.

Co-organiser: Dr. Maria Gkemou, Principal Researcher, Hellenic Institute of Transport (HIT)/ Centre for Research and Technology Hellas (CERTH), 52, Egialias, 15125, Marousi, Athens, Greece, Tel. +30-211-1069553, mgemou@certh.gr, www.hit.certh.gr

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

Future Mobility and Resilient Transport: Transition to innovation

Maria Gkemou is a Principal Researcher at the Hellenic Institute of Transport (HIT) of Centre for Research and Technology Hellas (CERTH) and Head of Clean and Automated Vehicles lab and of Industrial design, Intelligent Materials and Manufacturing in Transport lab at HIT. She is a Mechanical and Aeronautical Engineer with a PhD on driving behaviour modelling. Her main fields of expertise are CCAV, C-ITS, road safety, driving simulation, sustainable and clean mobility, field trials and evaluation in transport field. She works at CERTH/HIT since 2003, she has been/is Technical Manager in three projects, a Sup-project leader in a CCAV H2020 Innovation Action, whilst, in the past, she has participated in more than 15 research projects. She is author of over 60 publications in refereed journals, books and conferences, expert (evaluator/reviewer) in EU funded programmes and reviewer/judge in 4 scientific journals and member of TRA 2022 International Conference Programme Committee.

Co-organiser: Matina Loukea, Research Associate, Hellenic Institute of Transport (HIT)/ Centre for Research and Technology Hellas (CERTH), 52, Egialias, 15125, Marousi, Athens, Greece, Tel. +30-211-1069556, mloukea@certh.gr, www.hit.certh.gr

Matina Loukea is a Psychologist of the University of Athens, with a Master Degree in Science, Technology, Society - Science and Technology Studies and PhD Candidate on Autonomous Road Transport Vehicles in Transition: Governing Transition Pathways and Inclusive Sociotechnical Change. She works as an Associated Researcher in the Hellenic Institute of Transport since 2010 and she is Head of the Laboratory on Touristic Services for Special Groups. Her main fields of expertise are namely: user acceptance and social dimensions of CCAM, training and employability issues in the transportation sector, accessibility in transport and touristic services and pilot trials design. She currently participates in the projects/research studies SHOW (Shared automation Operating models for Worldwide adoption), Drive2TheFuture (Needs, wants and behaviour of "Drivers" vehicles and automated users today and into the http://www.drive2thefuture.com, BISON (Biodiversity & Infrastructure Synergies & Opportunities for European Transport Networks) as the Administrative Coordinator, TRA VISIONS 2022 (https://www.travisions.eu), Research Study on the social dimension of the transition to automation and digitalisation in transport, focusing on the labour force. She has also acted as Technical Manager Assistant in the SKILLFUL project (Skills and competences development of future transportation professionals at all levels - http://skillfulproject.eu/) and participated in already completed research studies, such as "Best practices guide on the carriage of persons with reduced mobility", "Towards a single and innovative European transport system - Lot 2 - International assessment and action plans of the focus areas", contracted by DG MOVE and "Transport and Tourism for Persons with Disabilities and Persons with Reduced Mobility", contracted by the European Parliament.

Associated project(s)

There are **16 initiatives** active/dealing with CCAV that will be addressed through the presentations, as follows. Their correspondence to the presentations is provided in a section following.

1. **SHOW** H2020 project - https://show-project.eu/

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

Future Mobility and Resilient Transport: Transition to innovation

- 2. SPACE H2020 project https://www.uitp.org/projects/space/
- 3. Drive2theFuture H2020 project http://www.drive2thefuture.eu/
- 4. WISE-ACT project -http://www.wise-act.eu
- 5. **AVENUE** H2020 project- https://h2020-avenue.eu/
- 6. EU EIP https://eip.its-platform.eu/
- 7. MANTRA www.mantra-research.eu
- 8. **CCAM Platform WG3** Physical and Digital Infrastructure, Classification of road network readiness for highly automated driving in Finland
- 9. **LEVITATE** H2020 project levitate-project.eu
- 10. **Trustonomy** project https://h2020-trustonomy.eu/
- 11. AV-PL-ROAD (national Polish project) https://www.its.waw.pl/11124,pl,av_pl_road.html
- 12. ARCADE project https://connectedautomateddriving.eu/about/arcade-project/
- 13. **SUaaVE** project http://www.suaave.eu/
- 14. ICT4CART project https://www.ict4cart.eu/
- 15. SPROUT project https://sprout-civitas.eu/

Target audience

The target audience of the session is a mixed audience, consisting of research and academia tackling with transport research, development and innovation, industrial partners from the automotive and infrastructure world as well as Tier 1 and 2 suppliers for them, public authorities and decision makers, members of standardization groups and policies contributors/issuers in the field of mobility.

Structure of the workshop

The special session encompasses invited talks and regular presentations from representatives from flagship initiatives in the CCAM area. The session will close with a round-table, where open issues of high interest in the field will be raised by the panelists giving the floor to a fruitful discussion.

The following table presents the proposed structure and timing of the session.

Workshop I - Challenges & Lessons Learned in CCAM (SHOW project)					
09:00-13:30	09:00-13:30				
Room: Muses	I				
Organizer: Dr.	Evangelos Bekiaris, Director, Hellenic Institute of Transport (HIT)/ Centre for				
Res	search and Technology Hellas (CERTH) <u>abek@certh.gr</u>				
Co-organizers:	Co-organizers: Dr. Maria Gkemou, Principal Researcher, Hellenic Institute of Transport (HIT)/				
	Centre for Research and Technology Hellas (CERTH)				
	Matina Loukea, Research Associate, Hellenic Institute of Transport (HIT)/				
	Centre for Research and Technology Hellas (CERTH)				
09:00-09:15	09:00-09:15 CCAM for Public Transport – Insights from the SPACE project				
	- Henriette Cornet, UITP				
09:15-09:30	09:15-09:30 User informed CCAM through international surveys				

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

	- Nikolas Thomopoulos, University of Surrey and WISE-ACT Chair			
09:30-09:45	Towards an automated mobility future: the Drive2theFuture user-centered			
	approach			
	- Evangelia Gaitanidou, CERTH/HIT			
09:45-10:00	Towards ethical decision support in automated driving systems			
	- Roi Naveiro, ICMAT			
10:00-10:15	The acceptance of automated vehicles through understanding the passenger's			
	state			
	- José Solaz, Instituto de Biomecánica de Valencia			
10:15-10:30	A unified network architecture to support advanced CCAM Use Cases			
	- Vasilis Sourlas, ICCS			
10:30-10:45	Physical and digital infrastructure for CCAM – state of the art			
	- Risto Kulmala, Traficon			
10:45-11:00	Forecasting and backcasting of Connected-Automated Vehicle impacts using			
	multiple methodological inputs			
	- Apostolos Ziakopoulos, NTUA			
11:00-11:30	Coffee Break			
11:30-11:45	Safety CCAM introduction - lesson learned from fields test			
	- Małgorzata Pędzierska, Motor Transport Institute			
11:45-12:00	Drivers and barriers to automated mobility: lessons learned from an Italian pilot			
	experiment			
	- Michal Rataj, Links Foundation			
12:00-12:15	Driving without Driver in Public Transportation			
	- Antonios Lalas, CERTH/ITI			
12:15-12:30	City policy response for adopting innovation in mobility; automated modular			
	buses/pods for cargo hitching (integrated passenger/freight operation) -			
	SPROUT project			
	- Georgia Ayfantopoulou, CERTH/HIT			
12:30-12:45	The EU-wide Knowledge base on CCAM: lessons learned from EU-funded and			
	national projects			
	- Stephane Dreher, ERTICO – ITS Europe			
12:45-13:20	Round – table: «Paving the way forward»			
	Moderator: Dr. Henriette Cornet, UITP			
	Panel: Dr. Evangelos Bekiaris, CERTH/HIT			
	Prof. George Yannis, NTUA Dr. Stephane Dreher, ERTICO – ITS Europe			
	Dr. Dimitrios Konstantas, UNIGE			
	Dr. Angelos Amditis, ICCS			
	Nikolas Thomopoulos, University of Surrey			
	Prof. Costas Antoniou, Technical University of Munich			
13:20-13:30	Conclusions			

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

Future Mobility and Resilient Transport: Transition to innovation

The full details of the proposed speakers' affiliations and contact details are provided below.

#	Presentation	Presenter(s) name	Presenter(s) affiliation	Presenter(s) e-mail	Relevant initiative(s)
1.	CCAM for Public Transport – Insights from the SPACE project	Henriette Cornet	UITP	henriette.cornet @uitp.org	SPACE H2020 project - https://www.uitp .org/projects/spa ce/
2.	User informed CCAM through international surveys	Nikolas Thomopoulos	University of Surrey	chair@wise- act.eu	wise-ACT project - http://www.wise- act.eu
3.	Towards an automated mobility future: the Drive2theFuture user-centered approach	Evangelia Gaitanidou	CERTH/HIT	lgait@certh.gr	Drive2theFuture H2020 project - http://www.drive 2thefuture.eu/
4.	Towards ethical decision support in automated driving systems	Roi Naveiro & David Rios Insua	ICMAT	david.rios@icmat. es; roi.naveiro@icma t.es; stefano.bianchi@ algowatt.com;	Trustonomy project - https://h2020- trustonomy.eu/
5.	The acceptance of automated vehicles through understanding the passenger's state	José Solaz	Instituto de Biomecánica de Valencia	jose.solaz@ibv.or g	SUaaVE project - http://www.suaa ve.eu/
6.	A unified network architecture to support advanced CCAM Use Cases.	Vasilis Sourlas	ICCS	v.sourlas@iccs.gr	ICT4CART project - https://www.ict4 cart.eu/
7.	Physical and digital infrastructure for CCAM — state of the art	Risto Kulmala	Traficon Ltd	risto.kulmala@tra ficon.fi	EU EIP (https://eip.its- platform.eu/), MANTRA (www.mantra- research.eu), CCAM Platform WG3 Physical and

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

#	Presentation	Presenter(s)	Presenter(s)	Presenter(s)	Relevant
		name	affiliation	e-mail	initiative(s) Digital Infrastructure, Classification of road network readiness for highly automated driving in Finland
8.	Forecasting and backcasting of Connected-Automated Vehicle impacts using multiple methodological inputs	Apostolos Ziakopoulos	NTUA	apziak@central.nt ua.gr	project - levitate- project.eu
9.	Safety CCAM introduction - lesson learned from fields test.	Małgorzata Pędzierska	Motor Transport Institute	malgorzata.pedzi erska@its.waw.pl	AV-PL-ROAD (national Polish project) – https://www.its. waw.pl/11124,pl, av_pl_road.html
10.	Drivers and barriers to automated mobility: lessons learned from an Italian pilot experiment	Michal Rataj	Links Foundation	michal.rataj@link sfoundation.com	SHOW H2020 project - https://show- project.eu/
11.	Driving without Driver in Public Transportation	Antonios Lalas	CERTH/ITI	lalas@iti.gr	AVENUE H2020 project- https://h2020- avenue.eu/
12.	City policy response for adopting innovation in mobility; automated modular buses/pods for cargo hitching (integrated passenger/freight operation) -	Georgia Ayfantopoulou; M. Teresa De la Cruz Eiriz	CERTH/HIT/ ZLC	gea@certh.gr; mdelacruz@zlc.e du.es	SPROUT project - https://sprout- civitas.eu/

Κινητικότητα του Μέλλοντος και Ανθεκτικές Μεταφορές: Ο δρόμος προς την Καινοτομία

10th INTERNATIONAL CONGRESS on TRANSPORTATION RESEARCH

#	Presentation	Presenter(s)	Presenter(s)	Presenter(s)	Relevant
		name	affiliation	e-mail	initiative(s)
	SPROUT project				
13.	The EU-wide Knowledge base on CCAM: lessons learned from EU-funded and national projects	Stephane Dreher	ERTICO – ITS Europe	s.dreher@mail.er tico.com	ARCADE project - https://connecte dautomateddrivin g.eu/about/arcad e-project/